Stereo-Based Tracking-by-Multiple Hypotheses Framework for Multiple Vehicle Detection and Tracking

نویسندگان

  • Young-Chul Lim
  • Jonghwan Kim
  • Chung-Hee Lee
  • Minho Lee
چکیده

In this paper, we present a tracking‐by‐multiple hypotheses framework to detect and track multiple vehicles accurately and precisely. The tracking‐by‐ multiple hypotheses framework consists of obstacle detection, vehicle recognition, visual tracking, global position tracking, data association and particle filtering. The multiple hypotheses are from obstacle detection, vehicle recognition and visual tracking. The obstacle detection detects all the obstacles on the road. The vehicle recognition classifies the detected obstacles as vehicles or non‐vehicles. 3D feature‐based visual tracking estimates the current target state using the previous target state. The multiple hypotheses should be linked to corresponding tracks to update the target state. The hierarchical data association method assigns multiple tracks to the correct hypotheses with multiple similarity functions. In the particle filter framework, the target state is updated using the Gaussian motion model and the observation model with associated multiple hypotheses. The experimental results demonstrate that the proposed method enhances the accuracy and precision of the region of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Real-Time Tracking of Multiple People Using Continuous Detection

Recent investigations have shown the advantages of keeping multiple hypotheses during visual tracking. In this paper we explore an alternative method that keeps just a single hypothesis per tracked object for computational e ciency, but displays robust performance and recovery from error by employing continuous detection during tracking. The method is implemented in the domain of people-trackin...

متن کامل

Quadrotor UAV Guidence For Ground Moving Target Tracking

The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...

متن کامل

Tracking of Multiple objects Using 3D Scatter Plot Reconstructed by Linear Stereo Vision

This paper presents a new method for tracking objects using stereo vision with linear cameras. Edge points extracted from the stereo linear images are first matched to reconstruct points that represent the objects in the scene. To detect the objects, a clustering process based on a spectral analysis is then applied to the reconstructed points. The obtained clusters are finally tracked throughou...

متن کامل

Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization

A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013